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Abstract are subsequently retrieved.

Several researchers have proposed to use differ-
Color histogram matching has been shown to be a ent kinds of color histograms as the features vectors

promising way of quickly indexing into a large image to be stored in the index ([Swain and Ballard 1991.
database. Yet. few experiments have been done to test Funt and Finlayson 1991, Stricker 1992, Swain 1993]).
the method on truly large databases, and even if they In the QIBC system ([Niblack et al. 1993]) color,
were performed. they would give little guidance to a texture and shape are used to build an index. Fea-
user wondering if the technique would be useful with ture vectors based on edge properties and textured-
his or her database. In this paper we define and an- ness of the images were proposed by [Nelson 1991.
alyze a measure relevant to extending color histogram Engelson and McDermott 1991]. All the above tuen-
indexing to large databases: capacity (how many dis- tioned papers report good results, but none of the al-
tinguishable histograms can be stored). gorithms has been tested on more than a 1000 images,

i.e., a truly large image database.

In this paper we present a careful theoretical analy-1 Introduction sis of one indexing technique. We compare the
theoretical results with the results obtained fromn a

As the cost of data storage drops dramatically. im- Monte Carlo simulation of a large image databatse and
age databases are growing in size: soon many image with the data extracted from the Smithsonian Image
databases will contain tens or hundreds of thousands Database'. Since many of the known techniques use
of images. The labor involved with cataloguing images various kinds of color histograms, we decided to fo-
by hand, and the difficulty of anticipating every user's cus on color histogram indexing. But the principles of
needs when assigning keywords to images, has led to our analysis should apply to other indexing "dgorit iins
the development of algorithms for retrieving images based on feature vectors.
by their content. The goal of these algorithms is to In the next section we briefly describe the itidex-
quickly retrieve the images that are similar to a given ing algorithm which will be analyzed in the fOllowingimage, or user-created image representation (e.g. a sections. In section 3 we discuss the metrica l9rilr-

9L color histogram). The user may be looking for an im-
C age lie or she has seen before, for another image of ties of the histogram space. This will reveal a h.Lsic
_ d a restriction for indexing algorithms that use color his-

Sr the same object or scene, or for an image that is sim-
O' ilar along some dimensions to one that was liked. Po- derive a lower bound for the capacity of a hisonwgr.et

i tential applications include stock photo databases for space whc bs the malanmbe of it lestlit lit

electronic publishing, consumers searching their digi- into the face. Th er of ou rslt .xpos.t
* . tal image databases created from such technologies as an interesting connection between binary codhing O-

. . Photo-CD. ory and the histogram space. In the last s''i, ,
A Typically, one feature vector per image is stored as ond the his togram spac he
San index for the database. A metric on the feature indicate a future direction of research.
"oi. space is then used to retrieve images. Given an im-age. the distances between its feature vector and the 'The Smithsonian image database is a publhly ....image database (ftp site photol.si.edu) that contaun,. .

"feature vectors in the index are computed. Images for imately 500 color images. Museum items and ph,,t,,,. .-.i.. .f
which this distance is less than a predefined threshold outdoor scenes make up a large part of the images.
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2 The indexing algorithm lowing subset of an n-dimensional vector space:

The histogram matching algorithm we analyze in W (hih 2 ,.. h.) Ihi 0(1 << n).hE h N}
this paper is essentially the same as those presented g=1
in [Swain and Ballard 1991, Funt and Finlayson 1991.
Stricker 19921. Recall that every simplex can be decompo.ed into situ-

We map the colors in an image into a discrete color plices of lower dimensions. i.e.. the faces of the original

space containing n colors. A color histogram H(M) simplex. It follows from the above equation that the

is a vector (hl. h 2 ..... hn) in a n-dimensional vector histogram space is a face of a n-dimensional simplex

space, where each element hj represents the number of and thus it is a (n - 1)-dimensional simplex.

pixels of color j in the image M. We assume that all In order for color histogram indexing to work, the

images have been scaled to contain the same number distance between histograms of completely different

of pixels N before histogramming. These histograms images must be large, i.e., their histograms must be t-

are the feature vectors to be stored as the index of the different for some distance threshold t. To determine

image database. We will refer to the images of the the interval of reasonable values for t we study the

database as the models. distance distribution of the color histograms obtained

To measure the distance d between two histograms from the Smithsonian image database 2 and from a ran-

H and I one can use the metric induced by the L1- domly generated database. Figure 1 displays these

norm as in [Swain and Ballard 1991, Funt and Fin- distributions for the Ll-metric. The procedure that

layson 1991, Stricker 1992] or a metric which is similar generates random color histograms is described in the

to the one induced by the L 2-norm (see [Niblack et al. appendix. Although we made no attempt to model the

19931). For the Li-norm the distance is defined as Smithsonian image database with our random color
histograms, the distance distributions of both data-

n bases have qualitatively similar features: Very few
dL. (I, H) = III - HILL, = Iii - hil histograms are very close together. The distributions

1=1 have two very pronounced modes of which one is at
the maximal distance. The location of the first mode

and for the L2-norm it is is not fixed. Many of the museum items in the Smith-
sonian database were photographed in front of the

S( Isame background and thus their histograms are rela-
dL2 (I, H) = jI - HIL, -- Z(i - h1 )2  tively close together. As a consequence the first mode

of the distance distribution for the Smithsonian data-

The LI-distance between two histograms is always less base occurs at a smaller distance than the one for the

than twice the number of pixels per image and the randomly generated database. In general. the loation
L2-distance is less than V2_ times the number of pixels of the first mode depends on the color composition ofper image. For a given distance t, we say that two the domain from which the images were taken. The

histograms are t-similar if their distance is less than distance between two color histograms is naximid if
or equal to t and t-different if their distance is greater and only if the intersection of the non-empty bins of

or qua tot ad tdiferet i thir istnceis reaer the two histograms is empty. Thus, the mode at the
than t. Now we can formulate the indexing algorithm maeimal distanc is prdc by the spar e of the

concisely: For a fixed retrieval threshold t. a model is maximal distance is produced by the sparseness of t he
going to be retrieved if its histogram is t-similar to the histograms.If the threshold t is larger than the location of 1he
histogram I of another image presented to the system. first mode of the distance distribution, then the in-

dexing algorithm produces too many inismnatches. If

The histogram space t is too close to 0, then the indexing procedure is too stor3 The hstogra spacestrict. Thus, the interval of reasonable vahlues for }

coincides with the first interval on which the uhitri-
Before we can study the algorithm we need to inves- bution increases very rapidly. In Figure 1 this inter-

tigate the metrical properties of the histogram space. val stretches from 25% to 60% of the maximal ,i-
This will unveil a basic restriction of color histograms tance for the Smithsonian image database anl from
as indices of an image database. 2Prior to histogramming, we cropped any borders --n th..-

Since all the images were scaled to contain the same images. and smoothed and scaled the images to contiun 1'1 4i,,i JeS
number N of pixels, the histogram space 'H is the fol- pixels.
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Figure 1: Distance distributions of 500 color histograms in the Ll-metric.

50% to 75% of the maximal distance for the ran- From now on we assume that all the histograms are
domly generated database. The interval for the Smith- sparse.
sonian image database contains the thresholds that
were reported to work well in [Swain and Ballard 1991,

Stricker 19921. 4 The capacity of a histogram space

O b servation I T he interval of reaso niable values forB e o e b i d n an m g e at as i d x o e w ul
t concies iththefirt itervl o whch he istnce like to determine whether color histograms provide a
distibuioninceass vry apily.good tool to distinguish between many different ira-

Note that in order to get a qualitative impression of ages from a given environment. The capacity of a his-
the distance distribution it suffices to look at a small, togram space that we study in this section addresses
random sample of the images in the image database. this problem. We investigate the maximal t imber of

In the following we analyze how so many large dis- different models in a database that can be retrieved
tances can be realized in the histogram space a. Con- without confusion by the indexing algorithm. This is
sider the barycenter ( N A..') the maximal number of t-different histograms that fit

space. This vector Corresponds to the histogram of an into a histogram space. We will derive a lower bound
image with equal amounts of all colors. The barycen- for this number. The proof of our result shows a very
ter is close to almost all the histogram vectors in interesting connection between histograms and ceodig

W/. The only histograms that are far away from the theory. The reader who is not familiar with the ba-
barycenter are those that lie close to a lower dimen- sic concepts of coding theory, such as the Hapving
sional face of the histogram space. In general, large distance, can find them in [van Lint 1992i.
distances between histograms can only be achieved if Let us start with a formal definition of the capacity.
the histograms are in sufficiently different faces of the
histogram space. In terms of colors and images this Definition 3 Given a n-dimensional histogram -;pace
means that images containing the same colors or is- di, a metric d on e and a distance threshold r . the
ages containing all the colors of the color space are capacity of u is defined by the maximal nugribt r n f th
likely to have histograms that are close togetherm different histograms that fit into R. We denote the

Observation 2 Indeaing by color histograms works inaite c t bewe h g a).
only if the histograms are sparse, i.e., most of the i ter The capacity also depends on the distribution of
ages contain only a fraction of the number of colors of the colors in the images. It is very hard to am ccounlt
the color space m for an arbitrary color distribution and hence we st ofy



the case where the distribution is uniform across the with 1 satisfying the stated inequalities, correspond to
color space. t-different histograms at the barycenters of the faces of

In [Swain and Ballard 1991] the authors propose 7R. Since these are not completely general histograms.

to measure the capacity by dividing the volume of the the maximal number of these histograms is smaller

histogram space by the volume of a (n- 1)-dimensional than the capacity. This is true for any admissable

sphere of radius i. The centers of the spheres corre- pair of parameters w and 1. Thus, the maximum of

spond to the histograms. This simple sphere packing A(n. 21. w) over I and w is still smaller than the capac-

technique does not capture the capacity because it as- ity which completes the proof.
sumes that the whole spheres lie inside the histogram
space, where in fact only the centers of the spheres For completely general values of I and ui the nunm-

(i.e.. the histograms) have to lie in Rt. ber A(n,21. w) is not known exactly. Thus. in most

The following theorem connects the capacity of a cases it is impossible to determine the maximum in
histogram space to a number which is well studied in theorem 4. But there exists a rich literature on

coding theory. The statement that such a connection bounds for A(n, 21, w) (see for example [van Lint 1992.

exists is by itself a novel and interesting remark. Best et al. 1978, Graham and Sloan 19801). We use a

lower bound for A(n, 21,w) from [Grahai- and Sloan
Theorem 4 Let A(n. 21, w) denote the maximal num- 1980] and theorem 4 to derive an explicitly computable

ber of codewords in any binary code of length n. con- lower bound for the capacity.

stant weight w and Hamming distance 21. Then the

capacity of the histogram space 7" satisfies the follow- Corollary 5 Let q be the smallest prime power such

ing inequality: that q > n. In the LI-case we set l(w) = [ -"-N] and

C(7-t,d.t) > max A(n, 21, w) 13 = n, and in the L 2 -case we set l(w) = f' (.)2)

Wj and 13 = min(n, L2 (1)2j). Then the capacity sati.sfies

_ <n the following inequality:l~n/2

where a is defined as Min the L 1-case and as 1 (t)2 C(7"t,d, t) , ý! 1 ( n

in the L 2 -case. 
qLw)1 w

Proof: From its meaning in coding theory it is clear
Proof: We have already noted in section 3 that large that the maximum in theorem 4 is attained for the

distances between histograms can only be achieved if minimal value of 1, i.e., I = [a]. [Grahau and Sloan
the histograms are in sufficiently different faces of the 1980, page o ntains a s Grt dn o ichhistogram space. For each face of It we represent the 1980, page 39] contains a short discussion omi which
histogram at the barycenter of this face by the vector lower bounds of A(n, 21,w) provide the tightest ap-
(0. 1. 1,0. 1,0), i.e., a binary word of length proximation on which range of parameters. Based on

nwtex l a biosy w o lt. this discussion we choose [Graham and Sloan 1980.n wih eacty w1's n i. Ovioslyu; n.Now theorem 41 to establish the assertion of tihe corollary.
we have to translate the condition that the histograms

have to be t-different into a condition on binary words. '
A binary word with w l's corresponds to a histogram(0., ... , 0,.. wt neris'.Lt2be To expose the strengths and the weaknesses of our(0 ,... E ,..) with w entries A. Let 21 be

w w W lower bound, we compare its value with the capac-
the number of bins in which two such histograms H, ity found by using a Monte Carlo algorithm. The
and H 2 differ. Obviously I has to be less than or equal details of how the Monte Carlo algorithm generates

to w. The distance between H, and H 2 is random color histograms can be found iii the appen-

dLý =1HI - H21L [ =21(N) dix. Table 1 displays the data for this comparison.
SI1Our lower bound is tighter for larger values of the

threshold t. This stems from the coding theory bound
and that we used to prove our result. Tighter approxima-

dL2 = IIHi - H21L = v@(N~ . tions for small values of t can be obtained in saml,'I way
/ as we have shown by using [Graham and Sloan 1980.

If the inequalities dL, Ž t and dL. > t are solved for theorem 7]. For small values of t the capacity of the
1, then they yield the values for a. Thus binary code- histogram space is so large that we normally do not

words of length n. weight w and Hamming distance 21. have to worry about "overfilling" the histogram '.pace.



tin %__ofcapacity _ment at the University of Chicago.t in % of capacity

max. distance lower bound Monte Carlo
50% 18.304 > 25,000 References
55% 2369 9829
60% 1861 2394 [Best et al. 1978] M. R. Best. A. E. Brouwer. et al.
65% 651 681 Bounds for binary codes of length less than 25.
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